ENGLISH
当前位置: 首页 > 师资队伍 > 副教授 > 副教授 > 正文

副教授

198411月生12F4E8

博士,副教授

南京师范大学环境学院

联系方式

电子邮箱:chenyanshan@njnu.edu.cn

办公室:南京师范大学仙林校区 素质楼407

通信地址:南京市栖霞区文苑路1号,210023

教育背景

2007.09-2013.12,中国科学院植物研究所,理学博士

2003.09-2007.06,北京林业大学,生物技术,理学学士

研究经历

2019.02-至今,南京师范大学,环境学院,副教授

2016.01-2018.12,南京大学,环境学院,副研究员

2014.01-2015.12,南京大学,环境学院,博士后

主要研究方向

植物砷代谢的生化和分子机理

砷污染的植物修复

低砷水稻培育及食品安全

承担(参与)的主要科研项目

1. 国家自然科学基金青年项目No: 21707068):蜈蚣草不同ACR3亚砷酸逆转运蛋白的功能研究和比较,2018.01-2020.12,主持;

2. 国家重点研发计划子课题(2016YFD080080102):蜈蚣草砷代谢关键基因克隆及转基因工程植物培育,2016.01-2020.12,主持;

3. 江苏自然科学基金青年项目(BK20160649):蜈蚣草关键砷外排基因的植物功能研究及其在降低粮食作物砷积累中的应用,2016.07-2019.06,主持;

4. 国家自然科学基金重点项目(21637002):土壤–水稻体系中砷迁移与阻控及其健康风险研究,2017.01-2021.12,参与;

近期发表论文(*通讯作者)

[1] Cao Y, Sun D, Chen JX, Mei H, Ai H, Xu G, Chen Y*, Ma LQ*. 2018. Phosphate transporter PvPht1;2 enhances phosphorus accumulation and plant growth without impacting arsenic uptake in plants. Environmental Science & Technology 52(7):3975-3981.

[2] Han YH, Jia MR, Liu X, Zhu Y, Cao Y, Chen DL, Chen Y*, Ma LQ. 2017. Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. Chemosphere 186: 599-606.

[3] Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y*, Ma LQ. 2017. Knocking Out OsPT4 Gene Decreases Arsenate Uptake by Rice Plants and Inorganic Arsenic Accumulation in Rice Grains. Environmental Science & Technology 51(21): 12131-12138.

[4] Chen Y, Hua CY, Jia MR, Fu JW, Liu X, Han YH, Liu Y, Rathinasabapathi B, Cao Y*, Ma LQ. 2017. Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environmental Science & Technology 51(18): 10387-10395.

[5] Han YH, Liu X, Rathinasabapathi B, Li HB, Chen Y*, Ma LQ. 2017. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environmental Pollution 227: 569-577.

[6] Liu X, Fu JW, Tang N, da Silva EB, Cao Y, Turner BL, Chen Y*, Ma LQ. 2017. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environmental Pollution 226: 212-218.

[7] Li H, Dong X, da Silva EB, Chen Y*, Ma LQ*. 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178: 466-478.

[8] de Oliveira LM, Suchismita D, Gress J, Rathinasabapathi B, Chen Y*, Ma LQ*. 2017. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment. Chemosphere 176: 249-254.

[9] Fu JW, Liu X, Han YH, Mei H, Cao Y, de Oliveira LM, Liu Y, Rathinasabapathi B, Chen Y*, Ma LQ. 2017. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. Journal of Hazardous Materials 330: 68-75.

[10] Liu X, Fu JW, Da Silva E, Shi XX, Cao Y, Rathinasabapathi B, Chen Y*, Ma LQ. 2017. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environmental Pollution 223: 230-237.

[11] Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma LQ. 2017. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Frontiers in Plant Science 8(268).

[12] Han YH, Fu JW, Xiang P, Cao Y, Rathinasabapathi B, Chen Y*, Ma LQ*. 2017. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. Journal of Hazardous Materials 321: 146-153.

[13] Liu X, Fu JW, Guan DX, Cao Y, Luo J, Rathinasabapathi B, Chen Y*, Ma LQ*. 2016. Arsenic Induced Phytate Exudation, and Promoted FeAsO4 Dissolution and Plant Growth in As-Hyperaccumulator Pteris vittata. Environmental Science & Technology 50(17): 9070-9077.

[14] de Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y*, Ma LQ*. 2016. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147: 36-43.

[15] Chen Y, Fu JW, Han YH, Rathinasabapathi B, Ma LQ*. 2016. High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere 144: 2189-2194.

[16] He Z#, Yan H#, Chen Y#(Co-first author), Shen H, Xu W, Zhang H, Shi L, Zhu YG*, Ma M*. 2016. An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytologist 209(2): 746-761.

[17] Chen Y, Han YH, Rathinasabapathi B, Ma LQ. 2015. Naming and functions of ACR2, arsenate reductase, and ACR3 arsenite efflux transporter in plants (correspondence on: Kumar, S., Dubey, R.S., Tripathi, R.D., Chakrabarty, D., Trivedi, P.K., 2015. Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int. 74:221–230.). Environment International 81:98-99.

[18] Chen Y#, Xu W#(Co-first author), Shen H, Yan H, He Z, Ma M*. 2013. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environmental Science & Technology 47(16): 9355-9362.


ResearcherIDF-1830-2017URL: http://www.researcherid.com/rid/F-1830-2017


著作章节

Chen Y, Cao Y, Rathinasabapathi B, Ma LQ. 2018. Book chapter: Novel Genes of Hyperaccumulator Ferns in Arsenic Tolerance, Uptake, and Metabolism: Implications for Crop Improvement. Springer Book: Current Advances in Fern Research, 978-3-319-75102-3, 447454_1_En, (17).


上一条:杜文超

下一条:张显球

南京师范大学环境学院,中国南京市文苑路1号 邮编:210023 School of Environment, Nanjing Normal University, No.1, Wenyuan Road, Nanjing, China, 210023 

联系电话:(025)85891455;传真:(025)85891455;Email:envi@njnu.edu.cn